company logo
Phone 416-240-7691
Toll Free 1-888-471-1588

FAQ - Fire Alarm Systems

FAQ - Fire Alarm Systems

FAQ - Fire Alarm Systems

  1. What is a fire alarm system?

    Fire Alarm Systems Typically, a fire alarm system is made up of the following components:

    • Initiating devices, capable of placing the system in the alarm state. These can be photoelectric smoke and heat detectors, ionization smoke detectors, heat detectors, in-duct smoke detectors, manually operated pull stations and sprinkler water flow sensors.
    • Indicating appliances, whose purpose is to announce building occupants or at a remote location when the system enters the alarm state, such as horns, strobe lights, chimes, bells, or combination units. They are also available in weatherproof and hazardous location versions.
    • A control panel, containing programming and operating electronics and user interface, is fed by standard branch-circuit wiring and contains replaceable circuit cards - one for each zone. This includes an alphanumeric display, showing the state of the system and providing troubleshooting information, and a touchpad so that onsite personnel can silence an alarm or trouble signal, reset the system following an event, and reprogram if necessary
    • Sealed batteries similar to emergency light batteries, but listed for fire alarm systems. These are usually 6V batteries wired in series to make up 24VDC for a power-limited system. The batteries can be contained in the control panel or in a separate enclosure. When AC power fails, the batteries take over with no interruption in fire protection. Of course, there is also a charger. Photoelectric Smoke Detector
    • Auxiliary devices, including remote annunciators with LEDs showing the state of the system, an alarm silence switch, and visual LED indication of the zone from which a fire alarm is initiated. Electromagnetic door holders (floor- or wall-mounted) are available. In case of alarm, the magnet is de-energized, allowing the door to swing shut. Later, it is reopened manually.
    • Initiating devices are connected to the control panel by a 2- or 4-wire initiating device circuit. In the case of a power-limited system, 24VDC is applied to two wires going to a string of initiating devices, which are wired in parallel. Neither wire is grounded, and they are isolated from EMT or other raceways, which are grounded through the connector at the control panel. Polarity is also critical. This voltage is used to power the solid-state circuitry within each detector. It's also used by the control panel to monitor the state (alarm or no alarm) of the initiating devices and zone wiring.

    A typical fire alarm system has numerous initiating devices divided among separate zones - each connected via an initiating device circuit to a central control panel. The control panel performs supervisory functions over the initiating devices, indicating appliances, all associated field wiring, telephone ties, and its own internal wiring and circuit cards.

  2. Fire Alarm Control Panel What is the main component of a fire alarm system?

    The Fire Alarm Control Panel (FACP). The FACP should be located where it can be responded to as necessary either around the clock or during operating hours. This can be at building security headquarters, adjacent to a telephone switchboard or in a maintenance office - whichever location offers maximum coverage. It should also be positioned in a fairly central location because if the system goes into alarm, a person needs to be able to race to the location and verify fire status before the alarm is silenced.

  3. How does a fire alarm system operate?

    A fire alarm system operates in one of three (or more) states: normal, alarm, and trouble. The state is reported at all times on the alphanumeric display. If the system goes into alarm, the indicating appliances throughout the building go off. These could be very loud horns for some occupancies, or softer chimes in others, such as a nursing home.

    The control panel monitors the initiating device circuits at all times for shorts and open wiring by means of the applied DC voltage. The initiating devices are normally open. In the event of a fire they become conductive at close to zero ohms. How, then, is it possible for the control panel to differentiate between a non-alarm state and an open wiring fault? This is accomplished by means of an end-of-line resistor.

    Fire Alarm Schematic Drawing The control panel also monitors the functionality of its own wiring and zone cards, and trouble is reported in the display.

    Another capability of the fire alarm system is to call out in case of alarm. Two dedicated phone lines are connected, and the system performs test calls periodically in accordance with programmed instructions. If either phone line won't connect, the system goes into the trouble state, so repairs can be made.

    The essence of a fire alarm system, as opposed to individual smoke detectors, even if they are wired to indicate in concert, is that it is supervised from a central location. The whole notion of supervision is critical. It does not mean that a person sits at the console and watches it at all times. What it means is that a supervisory voltage is applied to all circuitry, and current flow is monitored electronically to verify that equipment and wiring are intact.

    If the system goes into alarm and won't silence due to touchpad malfunction, for example, it can be disarmed after the zone is checked for fire by cutting off the power. First, unhook one side of the battery array, then unhook the black-white-green incoming power connector. If a fire alarm system is disabled, maintenance and security personnel should initiate fire patrols throughout the building. The telephone monitoring agency should be informed, and the insurance company contacted to verify that coverage is not voided.

transparency
Toronto Electrician
Request A Quote!
Electrical Project Estimate
Testimonials

" I am pleased to recommend Current Technologies and look forward to working with them again "

We're Social
Current Technologies on FacebooktransparencyCurrent Technologies on TwittertransparencyCurrent Technologies on Google+transparencyCurrent Technologies Blog
Current Technologies Ltd
83 Galaxy Blvd, Unit 18 Toronto, Ontario M9W 5X6
Phone: 416-240-7691 URL of Map